Jordens styrka |
Faktiskt, vad skulle bli av jorden om den förvandlades till en vätska? Med vetskap från vardaglig erfarenhet att fasta ämnen tappar sin form när de smälter, kan vi förvänta oss att samma sak händer med jorden. Men i verkligheten kommer detta inte att hända. I de föremål som vi hanterar i det praktiska livet beror förmågan att bibehålla formen på de krafter som verkar mellan nära atomer. Men sådan "Övervikt" kroppen, liksom jorden, börjar gravitationskraften också spela en viktig roll, med vilken hela jordens massa lockar var och en av sina partiklar. Det skulle i huvudsak ha säkerställt bevarandet av den nuvarande formen på jorden, även om vår planet hade blivit en flytande kropp. Följaktligen, när man beräknar jordens deformationer och bedömer dess styrka som en helhet (och inte enskilda bergprover), är det nödvändigt att ta hänsyn till både de elastiska egenskaperna hos jordens substans och effekten av gravitationen på den. Laboratorierna studerar de mekaniska egenskaperna hos stenar som tas från det yttre skiktet på jorden, bara några kilometer tjockt. Detta lager påverkar jordens styrka som helhet lite mer än ett tunt lager färg som appliceras på dess yta påverkar styrkan hos en metallkula. Information om jordens djupare lager ges till oss främst genom att studera förökning av seismiska vågor. Inte undra på att akademikern B. B. Golitsyn kallade jordbävningen för en lykta, som blinkar ett ögonblick och låter oss se jordens inre. Men när vi utvecklar denna jämförelse måste vi säga att ljuset från en sådan lykta dämpas på ett djup av 2900 km från jordens yta. Nedan är jordens kärna, genom vilken endast seismiska längsgående vågor passerar. Så för att uppskatta styrkan på jorden som helhet är det nödvändigt att överväga problemet med deformationer och spänningar hos en gravitationskula, bestående av ett inhomogent elastiskt skal och en kärna. Hur skalets densitet och elastiska egenskaper förändras med djupet kan anses vara kända. När det gäller kärnan måste man börja med hypoteser. Således är det naturligt att anta att kärnan, eventuellt med undantag för dess centrala del, är i flytande tillstånd, eftersom tvärgående seismiska vågor inte passerar genom den. (Observera att hypotesen om jordens flytande kärna ansågs redan innan seismologin kom fram. Men sedan motbevisades den, för man trodde att jordens skal bara är några kilometer eller tiotals kilometer tjockt, och ett sådant skal med en flytande kärna, som W. Thomson visade, skulle krossas av tidvattnet i kärnan.)
Tidvattenkrafter verkar ständigt på jorden och sträcker sig längs de raka linjer som förbinder jordens centrum med Månens och Solens centrum. Jordens yta böjer sig under belastningen av luftmassor i områden med högt atmosfärstryck. Alla jordens partiklar påverkas av en centrifugalkraft riktad vinkelrätt mot jordens rotationsaxel.Det är tydligt att riktningen för denna kraft kommer att förändras om positionen för rotationsaxeln i jordens kropp ändras. Och det faktum att detta verkligen händer fastställdes i slutet av förra seklet. Storlekarna och riktningarna för ovannämnda krafter kan beräknas. Om vi sedan tar någon modell av jorden kan vi teoretiskt också hitta jordens deformation när dessa krafter appliceras på den, till exempel för att beräkna hur avstånden mellan olika punkter på jordytan från dess centrum kommer att förändras. Ta till exempel tidvattenkraften, som, som sagt, sträcker jorden längs en rak linje som förbinder sitt centrum O med centrum L för den störande ljusstrålen: Månen eller Solen. Under dess inflytande skulle jordytan, om det var en regelbunden sfär med radie R, ta formen av en ellipsoid av revolution med den halvhuvudaxeln a riktad till L. - R är lika med för den här modellen. Sedan kan vi hitta längdförändringen radien för vektorn p för vilken punkt som helst på jordytan. Dessa förändringar är små. För ingen av de teoretiskt betraktade modellerna på jorden når de maximala fluktuationerna i längd p under månens och solens kombinerade inflytande inte en meter. Det är uppenbart att sådana förändringar inte kan mätas direkt. Varför var vi tvungna att uppfinna ett "viktlöst" hav? Ja, för tidvattnet i det verkliga havet komplicerar fenomenet något: det leder till förändringar i jordens gravitationspotential. Jordens elastiska deformationer ger en liknande effekt. Förhållandet mellan förändringen i jordens gravitationspotential och den yttre potentialen, denna förändring som orsakar den, betecknas med symbolen k. Parametrarna h och k kallas kärleksnummer, efter den engelska geofysikern som först introducerade dessa parametrar för att karakterisera jordens mekaniska egenskaper som helhet. Det är dessa parametrar som beräknas teoretiskt för olika modeller av jorden; de försöker bestämma dem ur analysen av observationer av olika fenomen. Vilka är dessa fenomen? Låt oss lista de viktigaste av dem:
Detta är fallet med absolut solid jord. Men om vi tar hänsyn till att jorden är deformerad under påverkan av olika krafter, kommer bilden att bli mer komplicerad. Tidvattenbildande krafter deformerar jorden så att dess kompression förändras något hela tiden. Detta innebär att ringen i vår modell kommer att förändras, och detta kommer i sin tur att manifestera sig i svaga periodiska fluktuationer i jordens rotationens vinkelhastighet. När kompressionen minskar ökar hastigheten och jorden börjar köra jämnt Det här är en sida av frågan. Men jordens deformationer påverkar dess rotation på ett annat sätt. För att förklara exakt hur, låt oss göra följande mentala upplevelse. Låt oss föreställa oss att jordens rotation har stoppat och centrifugalkraften inte längre verkar på den. Dessutom, om jorden var en helt solid kropp, skulle dess form vara densamma. Om jorden var en flytande kropp skulle den ha formen av en vanlig boll. Det ekvatoriella överskottet av massor, och därmed ringen i vår modell, skulle då försvinna helt. Men på den verkliga jorden, när dess rotation upphör, kommer inre elastiska krafter att spela. De kommer att motsätta sig gravitationskrafter, och tack vare detta kommer jorden fortfarande att vara en komprimerad sfäroid, även om dess kompression kommer att minska. Detta innebär att massan av ringen i vår modell också kommer att minska. Hur mycket? Detta är huvudfrågan, på vilken lösning bedömningen av jordens hårdhet beror på. Vi noterade att perioden med fri mutation är kortare, ju större ekvatorialöverskott av massor, det vill säga ringens massa. För en helt solid jord skulle denna period vara lika med 305 dagar. I verkligheten visar analysen av data om jordpolernas rörelse under de senaste 70 åren att det är nära 430 dagar. Detta förklarades av det faktum att perioden med fri mutation inte beror på hela massans överskott av ekvator, utan bara på den del av den som inte skulle försvinna om centrifugalkraftens handling upphörde. Därför är det lätt att beräkna att rotationsstoppet minskar massan av ringen i vår modell med 30%. (Mer exakt är denna ring uppdelad i två, och en av dem, som innehåller ungefär en tredjedel av den totala massan, är alltid inställd i ett plan vinkelrätt mot den momentana rotationsaxeln och påverkar inte rörelsen för denna axel i Jordens kropp.) Ovanstående nummer visar vid vilka förhållanden det skulle finnas en jämvikt mellan gravitationskrafterna som strävar efter att förvandla jorden till en boll och de elastiska krafterna som strävar efter att hålla sin form oförändrad. Under dessa arbeten förfinades några slutsatser av teorin om jordens rotation med en flytande kärna. Således visade det sig att den flytande kärnans inflytande borde leda till förändringar i amplituderna för vissa svängningar av jordens axel i rymden (forcerad mutation). Det manifesterar sig också i det faktum att ytterligare en svag cirkulär rörelse med en period nära dagar läggs till de redan kända komponenterna i jordens polers rörelse. Att hitta dessa effekter är en utmaning som ligger vid gränsen för den moderna astronomins kapacitet. Men det var värt att prova. Ett sådant försök gjordes av ukrainska astronomer. Det visade sig vara framgångsrikt. I synnerhet lyckades NA Popov i långsiktiga observationer av två zenitstjärnor i Poltava upptäcka svaga fluktuationer i latitud med en period förutsagd av MS Modenskys teori. Således erhölls nya argument till förmån för hypotesen om jordens flytande kärna. Vi kan nu säga att jorden som helhet verkar vara starkare än en ihålig stålkula med ett skal på cirka 3000 km tjockt. Följande kan dock invändas mot en sådan bedömning. Alla våra slutsatser drogs från studien av mycket svaga deformationer. Kan vi använda dem om vi måste beräkna krafternas handlingar som orsakar mycket mer betydande deformationer och till och med hotar vår planet? Tydligen är det omöjligt utan betydande justeringar.Men finns det ett hot om att sådana kraftfulla krafter kommer fram att sådana beräkningar blir nödvändiga? Kommer detta inte att hända, säg, eftersom vår planets rotationsregim kommer att störas avsevärt? Naturliga skäl till detta är svåra att hitta. Men kommer människor över tiden inte att kunna ändra jordens rotation efter eget gottfinnande? Det är inte första gången denna fråga ställs.
Men frågan slutade på ingenting. Det visade sig att ingenjörerna från Arctic Company i sina beräkningar gjorde ett grovt misstag: de tog inte hänsyn till det faktum att jorden inte är en boll utan har en extra massa i ekvatorbältet. Med hänsyn till denna massa gjorde en fransk ingenjör nya beräkningar och visade att under inverkan av det projicerade skottet skulle jordens poler röra sig på dess yta med endast 3 mikron. Det är konstigt att den här historien, som berättas i boken "Jordens rotation" Amerikanska geofysiker Munk och Macdonald har en modern fortsättning. I. Under presidentvalet 1956 sa senator Estes Kefauver, kandidaten till posten som vice president, att som ett resultat av tester av vätebomber skulle jordens axel kunna avvika med 10 °. Men exakta beräkningar visar något annat. Energin som frigörs genom explosionen av en medelstor vätebomb skulle vara tillräcklig för att ge en projektil som väger en miljon ton en hastighet på 11 kilometer per sekund. Men rekylen på en kanon som skulle ha avfyrat ett sådant skott skulle ha förskjutit jordens pol med bara en mikron. ”Och 70 år efter Jules Verne,- författarnas anteckning, - medlemmar av Washingtonregeringen vägrar fortfarande erkänna förekomsten och betydelsen av massornas ekvatoriella överskott "... Följaktligen är inte ens de superkraftfulla medel som människor nu besitter tillräckliga för att ha någon märkbar effekt på jordens rotation. Så vår planet är tillräckligt solid och hållbar för att motstå krafter som verkar periodiskt eller under en kort tid: de deformerar den bara subtilt. Men effekten kan vara annorlunda om krafterna agerar i samma riktning i miljontals år. Förmodligen, i förhållande till sådana krafter, beter sig jorden inte som en idealisk elastisk kropp utan som en plastkropp som ändrar sin form, om än långsamt men betydligt. Här kommer vi till frågorna om jordens utveckling och den roll som interna processer spelar i detta. De skapar spänningar i jordens kropp, ibland överskrider dess ultimata styrka. Det är möjligt att tidvattendeformationer av jorden och till och med små störningar i dess konstanta rotation ibland spelar rollen som en "utlösare", det vill säga den sista chocken som orsakar brott och förskjutningar i jordskorpan och manteln . De senare fenomenen kan i sin tur påverka jordens rotation och geofysiker och astronomer är nu intensivt engagerade i sökandet efter manifestationer av detta inflytande. E. Fedorov Liknande publikationer |
Vad är en bur? | Fysiologisk tvådimensionalitet av information: mekanismer och konsekvenser |
---|
Nya recept